32 research outputs found

    Ports as Drivers of Urban and Regional Growth

    Get PDF
    AbstractTraded volumes – from raw materials to final consumer goods through intermediary products – are projected to continue growing in the foreseeable future: sheer domestic EU and global competition will impose challenging requirements to providing innovative supply-chain and logistics solutions, including not only smart business models but also smart and foresighted infrastructural planning and management capacities.Public planning and funding face critical limitations, such as: (i) not duly accounting for the induced pressures on inland transportation infrastructure allowing access from/to the port to/from interesting trade links/destinations; (ii) not duly accounting for indirect costs and benefits resulting from either new infrastructural developments or re-deployment of existing infrastructures, and (iii) not duly accounting for the impacts of ports on the cities in which they are localised.Fragmented projections and impact assessments lead to sub-optimal economic performance of multi-modal terminals, the transportation network and the area they impact on increasing the risk of depleting initial investments or requiring on-going/permanent – public support, including to overcome local negative impacts.This article has two main purposes. On the one hand, it strives to identify shortcomings that hinder the achievement of expected benefits on urban and regional growth linked to port activity expansion. It is not based on a comprehensive analysis of case studies but on literature review and for that reason limiting factors mentioned in the article are not necessarily suited to specific situations. On the other hand, the article proposes a reflection on the relevant analytical and policy intervention tools having the potential to tackle and – ideally – resolve shortcomings. It advocates that a wider use of such tools would enhance the efficiency of handling freight volumes through ports and onto surface transport corridors maximizing positive spillover effects while minimizing nuisances and drawbacks for the urban and regional areas concerned.Congestion reduction in and around port areas and enhanced competitiveness are the expected results from balanced multimodal transport solutions. Many benefits are associated with efficient ports yet there tends to be a mismatch with gains spilling over to other regions and negative impacts borne locally.This area of research is expected to become all the more relevant in view of growing size of ships and therefore reduced number of ports/operators capable of handling those as well as higher induced pressure on – often already congested – inland transportation corridors.Conversely, development of the Motorways of the Sea and implementation of Short Sea Shipping foresee the increased use of medium and small ports to relieve the heavy burden on land transport, but this implies revised shipping patterns as well as overcoming fragmentation in transport infrastructure planning

    Burkholderia cenocepacia BC2L-C Is a Super Lectin with Dual Specificity and Proinflammatory Activity

    Get PDF
    Lectins and adhesins are involved in bacterial adhesion to host tissues and mucus during early steps of infection. We report the characterization of BC2L-C, a soluble lectin from the opportunistic pathogen Burkholderia cenocepacia, which has two distinct domains with unique specificities and biological activities. The N-terminal domain is a novel TNF-α-like fucose-binding lectin, while the C-terminal part is similar to a superfamily of calcium-dependent bacterial lectins. The C-terminal domain displays specificity for mannose and l-glycero-d-manno-heptose. BC2L-C is therefore a superlectin that binds independently to mannose/heptose glycoconjugates and fucosylated human histo-blood group epitopes. The apo form of the C-terminal domain crystallized as a dimer, and calcium and mannose could be docked in the binding site. The whole lectin is hexameric and the overall structure, determined by electron microscopy and small angle X-ray scattering, reveals a flexible arrangement of three mannose/heptose-specific dimers flanked by two fucose-specific TNF-α-like trimers. We propose that BC2L-C binds to the bacterial surface in a mannose/heptose-dependent manner via the C-terminal domain. The TNF-α-like domain triggers IL-8 production in cultured airway epithelial cells in a carbohydrate-independent manner, and is therefore proposed to play a role in the dysregulated proinflammatory response observed in B. cenocepacia lung infections. The unique architecture of this newly recognized superlectin correlates with multiple functions including bacterial cell cross-linking, adhesion to human epithelia, and stimulation of inflammation

    Promoter Region of the Escherichia coli O7-Specific Lipopolysaccharide Gene Cluster: Structural and Functional Characterization of an Upstream Untranslated mRNA Sequence

    No full text
    We report the identification of the promoter region of the Escherichia coli O7-specific lipopolysaccharide (LPS) gene cluster (wb(EcO7)). Typical −10 and −35 sequences were found to be located in the intervening region between galF and rlmB, the first gene of the wb(EcO7) cluster. Data from RNase protection experiments revealed the existence of an untranslated leader mRNA segment of 173 bp, including the JUMPStart and two ops sequences. We characterized the structure of this leader mRNA by using the program Mfold and a combination of nested and internal deletions transcriptionally fused to a promoterless lac operon. Our results indicated that the leader mRNA may fold into a series of complex stem-loop structures, one of which includes the JUMPStart element. We have also found that one of the ops sequences resides on the predicted stem and the other resides on the loop region, and we confirmed that these sequences are essential for the RfaH-mediated regulation of the O polysaccharide cluster. A very similar stem-loop structure could be predicted in the promoter region of the LPS core operon encoding the waaQGPSBIJYZK genes. We observed another predicted stem-loop, located immediately downstream from the wb(EcO7) transcription initiation site, which appeared to be involved in premature termination of transcription. This putative stem-loop is common to many other O polysaccharide gene clusters but is not present in core oligosaccharide genes. wb(EcO7)-lac transcriptional fusions in single copy numbers were also used to determine the effects of various environmental cues in the transcriptional regulation of O polysaccharide synthesis. No effects were detected with temperature, osmolarity, Mg(2+) concentration, and drugs inducing changes in DNA supercoiling. We therefore conclude that the wb(EcO7) promoter activity may be constitutive and that regulation takes place at the level of elongation of the mRNA in a RfaH-mediated manner

    Interplay of the Wzx translocase and the corresponding polymerase and chain length regulator proteins in the translocation and periplasmic assembly of lipopolysaccharide o antigen

    No full text
    Genetic evidence suggests that a family of bacterial and eukaryotic integral membrane proteins (referred to as Wzx and Rft1, respectively) mediates the transbilayer movement of isoprenoid lipid-linked glycans. Recent work in our laboratory has shown that Wzx proteins involved in O-antigen lipopolysaccharide (LPS) assembly have relaxed specificity for the carbohydrate structure of the O-antigen subunit. Furthermore, the proximal sugar bound to the isoprenoid lipid carrier, undecaprenyl-phosphate (Und-P), is the minimal structure required for translocation. In Escherichia coli K-12, N-acetylglucosamine (GlcNAc) is the proximal sugar of the O16 and enterobacterial common antigen (ECA) subunits. Both O16 and ECA systems have their respective translocases, WzxO16 and WzxE, and also corresponding polymerases (WzyO16 and WzyE) and O-antigen chain-length regulators (WzzO16 and WzzE), respectively. In this study, we show that the E. coli wzxE gene can fully complement a wzxO16 translocase deletion mutant only if the majority of the ECA gene cluster is deleted. In addition, we demonstrate that introduction of plasmids expressing either the WzyE polymerase or the WzzE chain-length regulator proteins drastically reduces the O16 LPS-complementing activity of WzxE. We also show that this property is not unique to WzxE, since WzxO16 and WzxO7 can cross-complement translocase defects in the O16 and O7 antigen clusters only in the absence of their corresponding Wzz and Wzy proteins. These genetic data are consistent with the notion that the translocation of O-antigen and ECA subunits across the plasma membrane and the subsequent assembly of periplasmic O-antigen and ECA Und-PP-linked polymers depend on interactions among Wzx, Wzz, and Wzy, which presumably form a multiprotein complex

    Functional Analysis of Predicted Coiled-Coil Regions in the Escherichia coli K-12 O-Antigen Polysaccharide Chain Length Determinant Wzzâ–¿

    No full text
    Wzz is a membrane protein that determines the chain length distribution of the O-antigen lipopolysaccharide by an unknown mechanism. Wzz proteins consist of two transmembrane helices separated by a large periplasmic loop. The periplasmic loop of Escherichia coli K-12 Wzz (244 amino acids from K65 to A308) was purified and found to be a monomer with an extended conformation, as determined by gel filtration chromatography and analytical ultracentrifugation. Circular dichroism showed that the loop has a 60% helical content. The Wzz periplasmic loop also contains three regions with predicted coiled coils. To probe the function of the predicted coiled coils, we constructed amino acid replacement mutants of the E. coli K-12 Wzz protein, which were designed so that the coiled coils could be separate without compromising the helicity of the individual molecules. Mutations in one of the regions, spanning amino acids 108 to 130 (region I), were associated with a partial defect in O-antigen chain length distribution, while mutants with mutations in the region spanning amino acids 209 to 223 (region III) did not have an apparent functional defect. In contrast, mutations in the region spanning amino acids 153 to 173 (region II) eliminated the Wzz function. This phenotype was associated with protein instability, most likely due to conformational changes caused by the amino acid replacements, which was confirmed by limited trypsin proteolysis. Additional mutagenesis based on a three-dimensional model of region I demonstrated that the amino acids implicated in function are all located at the same face of a predicted α-helix, suggesting that a coiled coil actually does not exist in this region. Together, our results suggest that the regions predicted to be coiled coils are important for Wzz function because they maintain the native conformation of the protein, although the existence of coiled coils could not be demonstrated experimentally

    Defective O-Antigen Polymerization in tolA and pal Mutants of Escherichia coli in Response to Extracytoplasmic Stress

    No full text
    We have previously shown that the TolA protein is required for the correct surface expression of the Escherichia coli O7 antigen lipopolysaccharide (LPS). In this work, ΔtolA and Δpal mutants of E. coli K-12 W3110 were transformed with pMF19 (encoding a rhamnosyltransferase that reconstitutes the expression of O16-specific LPS), pWQ5 (encoding the Klebsiella pneumoniae O1 LPS gene cluster), or pWQ802 (encoding the genes necessary for the synthesis of Salmonella enterica O:54). Both ΔtolA and Δpal mutants exhibited reduced surface expression of O16 LPS as compared to parental W3110, but no significant differences were observed in the expression of K. pneumoniae O1 LPS and S. enterica O:54 LPS. Therefore, TolA and Pal are required for the correct surface expression of O antigens that are assembled in a wzy (polymerase)-dependent manner (like those of E. coli O7 and O16) but not for O antigens assembled by wzy-independent pathways (like K. pneumoniae O1 and S. enterica O:54). Furthermore, we show that the reduced surface expression of O16 LPS in ΔtolA and Δpal mutants was associated with a partial defect in O-antigen polymerization and it was corrected by complementation with intact tolA and pal genes, respectively. Using derivatives of W3110ΔtolA and W3110Δpal containing lacZ reporter fusions to fkpA and degP, we also demonstrate that the RpoE-mediated extracytoplasmic stress response is upregulated in these mutants. Moreover, an altered O16 polymerization was also detected under conditions that stimulate RpoE-mediated extracytoplasmic stress responses in tol(+) and pal(+) genetic backgrounds. A Wzy derivative with an epitope tag at the C-terminal end of the protein was stable in all the mutants, ruling out stress-mediated proteolysis of Wzy. We conclude that the absence of TolA and Pal elicits a sustained extracytoplasmic stress response that in turn reduces O-antigen polymerization but does not affect the stability of the Wzy O-antigen polymerase

    Dam Methylation Controls O-Antigen Chain Length in Salmonella enterica Serovar Enteritidis by Regulating the Expression of Wzz Proteinâ–¿

    No full text
    We reported previously that a Salmonella enterica serovar Enteritidis dam mutant expressing a truncated Dam protein does not agglutinate in the presence of specific antibodies against O9 polysaccharide. Here we investigate the participation of Dam in lipopolysaccharide (LPS) synthesis in Salmonella. The LPS O-antigen profiles of a dam null mutant (SEΔdam) and the Salmonella serovar Enteritidis parental strain were examined by using electrophoresis and silver staining. Compared to the parental strain, SEΔdam produced LPS with shorter O-antigen polysaccharide chains. Since Wzz is responsible for the chain length distribution of the O antigen, we investigated whether Dam methylation is involved in regulating wzz expression. Densitometry analysis showed that the amount of Wzz produced by SEΔdam is threefold lower than the amount of Wzz produced by the parental strain. Concomitantly, the activity of the wzz promoter in SEΔdam was reduced nearly 50% in logarithmic phase and 25% in stationary phase. These results were further confirmed by reverse transcription-PCR showing that wzz gene expression was threefold lower in the dam mutant than in the parental strain. Our results demonstrate that wzz gene expression is downregulated in a dam mutant, indicating that Dam methylation activates expression of this gene. This work indicates that wzz is a new target regulated by Dam methylation and demonstrates that DNA methylation not only affects the production of bacterial surface proteins but also the production of surface polysaccharides
    corecore